Processing math: 100%

Uniformfordeling

Uniformfordelingen er den aller enkleste kontinuerlige sannsynlighetsfordelingen. En uniformfordeling angir essensielt bare at alle verdier i et angitt intervall på tallinja er like sannsynlige. For uniformfordelingen er det ganske enkelt å utlede formler for forventningsverdi, varians og kumulativ fordelingsfunksjon.

Uniformfordeling

Vi starter med å definere uniformfordelingen ved å angi hvordan sannsynlighetstettheten skal se ut.

Notasjon

Det benyttes ulike notasjoner for å spesifisere at en stokastisk variabel X er uniformfordelt med parametre a og b. Det kanskje mest vanlige er å skrive XUnif(a,b). En annen variant er å skrive Xu(x;a,b,) der u(x;a,b) betegner sannsynlighetstettheten til den angjeldende uniformfordeling.

Eksempler på sannsynlighetstetthet

Figur 1 viser sannsynlighetstettheten for tre uniformfordelinger. Unif(0,1)-fordelingen er vist i rødt, Unif(1,1)-fordelingen i blått og Unif(2,2)-fordelingen i grønt.

Figur 1: Sannsynlighetstettheter f(x) for uniformfordelinger med a=0.0,b=1.0 i rødt, med a=1.0,b=1.0 i blått, og med a=2.0,b=2.0 i grønt.

Sammenheng med andre fordelinger

I TMA4240/TMA4245 Statistikk diskuterer vi ingen sammenheng mellom uniformfordelingen og andre fordelinger.